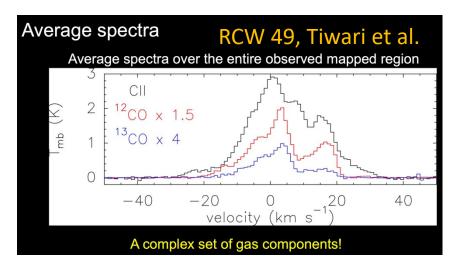
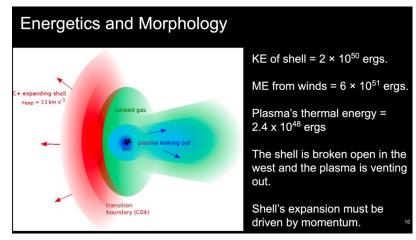


German/European Instrumentation Effort

Bernhard Schulz

Deputy Director SOFIA Science Mission Operations, NASA Ames Deutsches SOFIA Institut, Univ. Stuttgart


Science Requirements

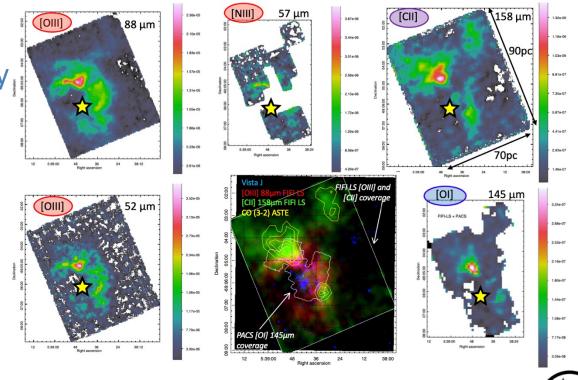


Workshop 26-28 Jul 2021

- 231 registered participants;
- 3 days @ ~4.5h per day
- 56 Presenters
- Main Themes: ISM, PDRs, shocks, star formation, astrochemistry
- 1/3 of presentations extragalactic
 - High resolution spectroscopy MIR and FIR

An example from the talk by Maytraiyee Tiwari

Science Requirements

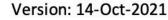

Workshop 26-28 Jul 2021

- 231 registered participants;
- 3 days @ ~4.5h per day
- 56 Presenters
- Main Themes: ISM, PDRs, shocks, star formation, astrochemistry
- 1/3 of presentations extragalactic
 - High resolution spectroscopy MIR and FIR
 - Trade spectral resolution for sensitivity

30Dor: SOFIA/FIFI-LS data

Chevance et al. 2020b

Science Requirements

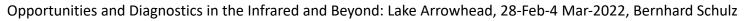


Workshop 26-28 Jul 2021

- 231 registered participants;
- 3 days @ ~4.5h per day
- 56 Presenters
- Main Themes: ISM, PDRs, shocks, star formation, astrochemistry
- 1/3 of presentations extragalactic
 - High resolution spectroscopy MIR and FIR
 - Trade spectral resolution for sensitivity
 - Polarimetry in FIR
 - MIR/FIR broadband photometry
 - Specific lines
 - Time sampling
- Specific requests:
 - Fine structure lines, HD, CO ladder, oxygen compounds
 - large scale mapping of [NII] 122μm / 205μm
 - 350µm filter
 - NIR capabilities for occultation obs

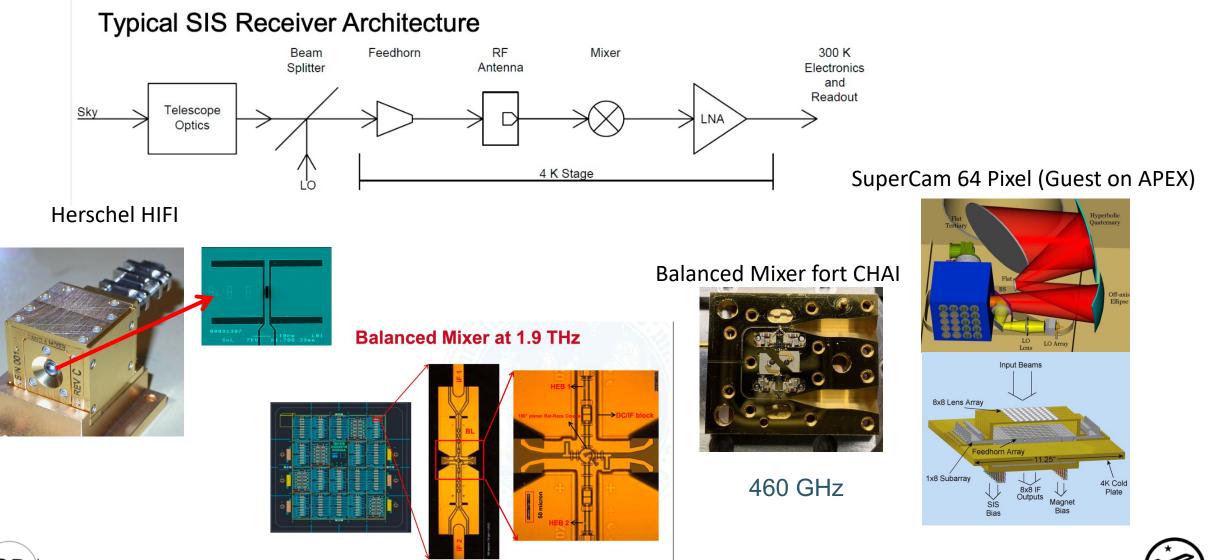
Session	Talks	Posters
Solar System	5	
Star & Planet Formation	6	
Interstellar Medium	15	8
Late Stellar Evolution	2	
Nearby Galaxies	8	3
High-Redshift Galaxies	3	4

46	73%
15	
12	24%
32	51%
13	21%
19	30%
4	6%
12	19%
2	3%
3	5%
7	11%
5	8%
6	10%
21	33%
37	59%
63	100%
	13 19 4 12 2 3 7 5 6 21 37

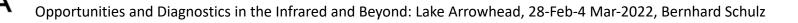


Workshop 17-19 Nov 2021

- 156 registered participants;
- 3 days @ ~4.5h per day
- 31 Presenters
- Main Themes:
 - Airborne platforms
 - Heterodyne devices/systems
 - Direct detection devices/systems
 - Instruments and funding

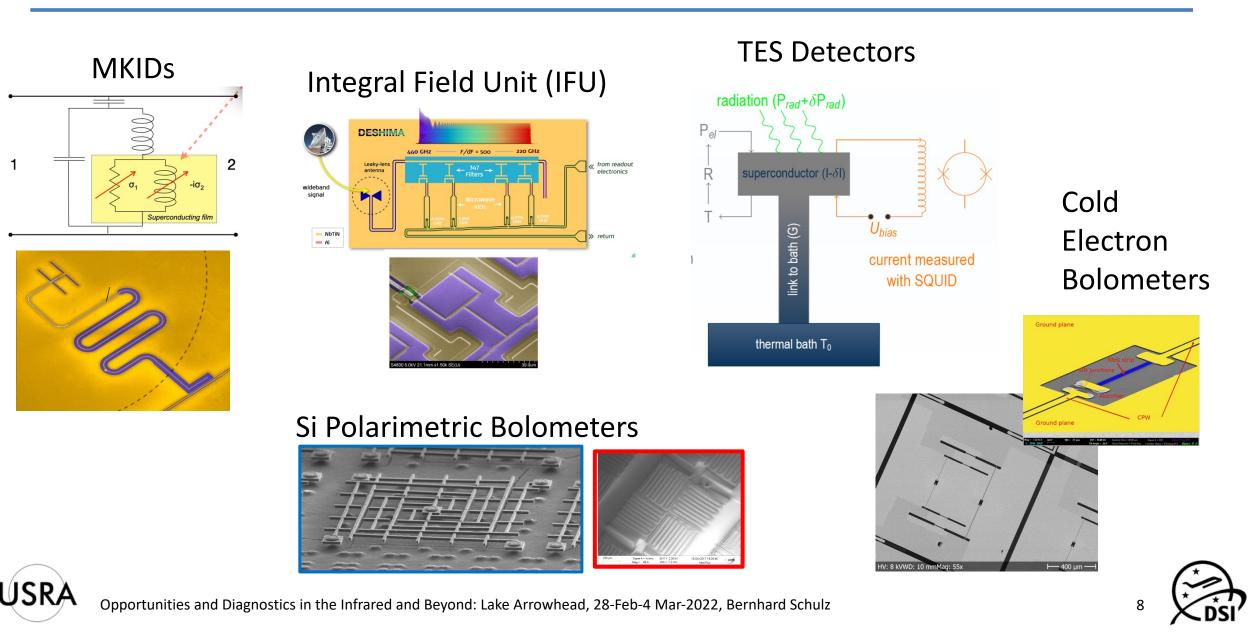


Heterodyne Technology

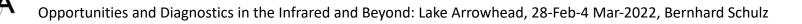


- Highest spectral resolution (R~10⁶)
- Well understood technology
- Feedhorns
- Mixer:
 - v>1 THz: HEB (Hot electron bolometers)
 - v<1THz: SIS (Superconductor-Insulator-Superconductor)
 - IF Bandwith <5GHz, with new materials ~9 GHz possible
- Local Oscillator (LO):
 - v<2THz: Frequency multiplied types
 - v>2THz: Quantum cascade lasers (QCL)

- Backend Spectrometer
 - Much electronics that requires power
- 100 Pixels challenging
- Challenges:
 - Micromachining and handling
 - Miniaturization
 - LO coupling and power
 - Mixer cooling
 - Low power spectrometer electronics (CMOS?)
- Modular approach? 35 pixels?
- Single frequency exchangeable front end



Direct Detection Technology


Direct Detection Technology

- large pixel counts
- No quantum noise penalty
- Maximum R~10⁵
- Kinetic Inductance Detectors (KIDs)
 - Lumped element KIDs (CNRS Grenoble)
 - NEP~10⁻¹⁹ W/VHz
 - Antenna Coupled KIDs (SRON,TU-Delft)
 - Integrated Field Unit (IFU) (TU-Delft)
 - Spectrally resolved pixels with KIDs
 - 350 μm spectral mapping at R ~10 ("filter") or R = 100-2000?
 - FIFI+LS Upgrade (Illinois, DSI, JPL, UdEC, USRA)
 - Use JPL Starfire KID development
 - Increase spaxels to 9x7 and FOV by 1.75
 - Extend range to 42μm and 206μm

- Transition Edge Detectors (TES)
 - Wide range all IR/submm, very adaptable
 - TES application for security scanner (Leibnitz Inst.)
- Semiconductor Bolometers
 - Silicon Polarimetric Detector Arrays (CEA, MPE)
 - On chip polarimetry
 - Add spectroscopy with Etalon, Fabry-Perot Scanner, Moving Backshort
- Cold Electron Bolometers
 - Multichroic receivers with Cold-Electron Bolometers (Chalmers, Nizni Novgorod TU...)
 - Wide wavelength range and very small detector element
 - Self cooling

Airborne Platforms

- SOFIA (NASA, DLR)
 - Airplane 2.7m telescope,~150 flights per year to the stratosphere 4 flights/week @ 10h
 - Crewed mission
 - Fully functional observatory with 20 year operational lifetime
 - Payload mass <600kg, <6500 Watts (instrument only)
 - LHe cryocoolers
- **COPILOT** (CNES, IRAp, IAS, CEA, Cardiff, Rome)
 - Balloon missions, 1 m telescope
 - wide field broad band photometry of C+
- Blast Observatory (NASA and Italian space agency)
 - Balloon mission, 1.8 m Gregorian telescope
 - 175 μm 250 μm, 350 μm MKIDs (~8000 det), 30 days, ~500 W power by solar cells (up to 1980W)
 - Payload 1225kg (includes telescope)

- ASTHROS (NASA-JPL)
 - Balloon mission, 2.5m telescope, 2 year cadence
 - [NII] 122μm (2.675 THz) and 205μm (1.461 THz), 4 pixels, 4K cryocooler, 20 days
 - 15 days around Antarctica
 - payload 2700 kg, 900kg, 450kg (balloon type)
 - 900 W of power
- Sunrise Mission (MPS Göttingen)
 - 1 m telescope, UV and visible
 - Altitudes are 35km-43km
 - durations are 5-6 days arctic, <43 days antarctic

- Airplane and balloons have each their individual strengths
- SOFIA
 - regular observations 4 days a week
 - Safe landings
 - Good calibration
 - long instrument lifetime
 - Observatory operation serves many communities
 - Accommodating power and mass limits
 - Moveable observatory
 - "Rapid" response within reason is possible
 - Overflight restrictions only minor problem

- Balloons
 - Higher altitude
 - Long observing time, especially with high pressure balloons
 - Relatively cheap
 - Safe landing considered biggest issue
 - Gondola protection for payload
 - Probability for total loss high
 - Overflight restrictions an issue in the north
 - Very different schedule considerations
 - Typically plan for 1 flight, next one ~2 years later
 - Waiting for the right weather conditions
 - Stringent mass and power limitations
 - Long duration balloons less lift
 - Good for focused longer duration missions

- Terahertz Mapper
 - Relatively clear idea how it will look
 - Specific frequencies important (science feedback needed)
- 100 Pixels considered a challenge
 - Needs simple reproducible design
 - Multiple suggestions of building modular and upgradeable
 - (GREAT example)
 - LOs for >1 THz will be QCLs that are harder to tune
 - Exchangeable front ends for single frequency
- Expertise is still there. Funding needed.

- FIFI+LS: FIFI-LS Upgrade to more pixels and better detectors
 - Est. cost is ~\$4M (\$2.5M is for detectors), . 2.5 years (1.5 years downtime)
- HIRMES-2: Solve detector issues, reduce complexity and finish
- HIRMES pHD: HD specialized spectrometer based on HIRMES

 Could be modular approach to HIRMES-2
- Near-infrared channel for SOFIA's Focal Plane Imager FPI+ – NIR channel ~\$350k, new M3 ~940k
- B-BOP derivative for Co-PILOT (or SOFIA)
- 350 μm Spectral Mapper based on IFU technology
- Many options: Loop back with science needed

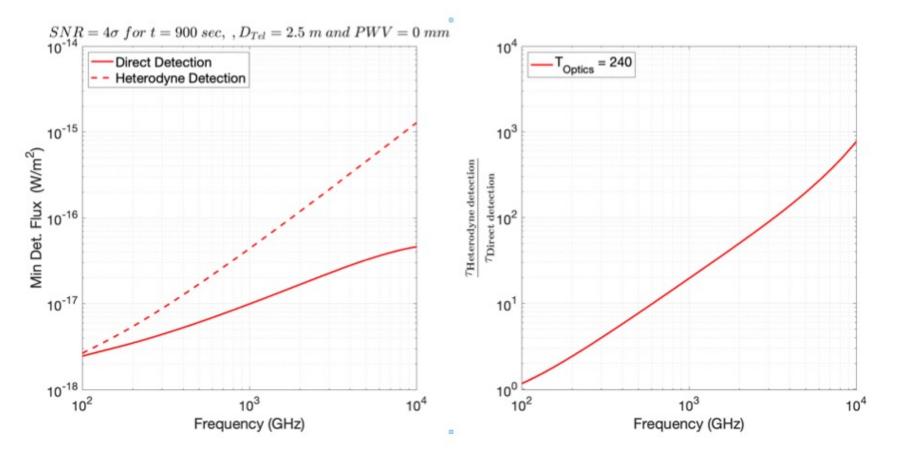
- Balloons are great for focused high altitude missions
 - It is still a long way to a regular observatory operation
 - Main obstacles are
 - Considerable risk during landing
 - Strong weather dependence of launch
- New airborne observatories need safe landing and mobility
 - Study steerable glider landing and propulsion systems
 - Study by Keck Institute of airships reaching 65000 ft.
 - Considering development time, this would be a good SOFIA successor
- SOFIA is a working and well performing observatory
 - There are still 11 years of the 20 year operational lifetime left
 - New instrumentation can be built but needs project stability

Conclusion

- European technology is there to substantially upgrade SOFIA abilities and science.
- Another iteration with scientists is needed
- Any European funding will require project stability for the projected development time, i.e.
 >= 5 years
- Balloons are good for specific tasks but are not the Far-IR observatory solution for the next 10-15 years due to lack of safe landing capability and strong weather dependence

Keep SOFIA flying!

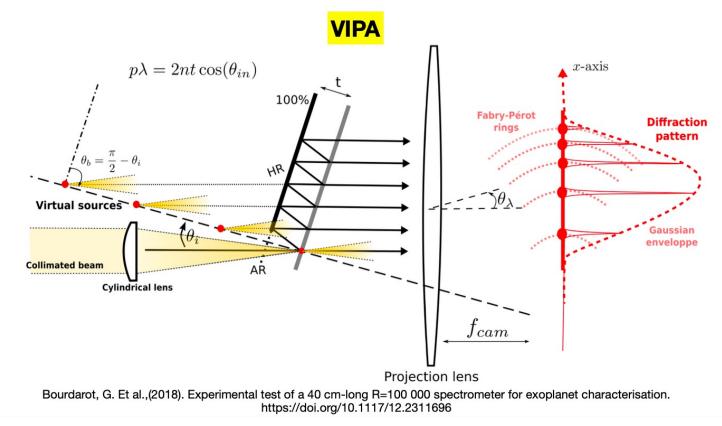
Stopping now is like stopping Herschel after 2 years! Agree on a remaining lifetime and provide stability Spend a moderate budget per year on upgrades Start preparing for a successor now


Backups

Sensitivity Limits Direct Detection vs. Coherent Detection

Talk by Baselmans

VIPA Spectroscopy



Talk by Baselmans

High resolution spectroscopy using direct detectors

On needs a folded mechanism to beat the long path length differences:

- disambiguation distance: $\Delta d = \frac{1}{2}\lambda \cdot R, \quad R = \frac{\lambda}{\delta\lambda}$
- Resonant cavities, such as VIPA's, are more compact

